Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 207(2): 626-639, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34261666

ABSTRACT

Sepsis is a complex infectious syndrome in which neutrophil participation is crucial for patient survival. Neutrophils quickly sense and eliminate the pathogen by using different effector mechanisms controlled by metabolic processes. The mammalian target of rapamycin (mTOR) pathway is an important route for metabolic regulation, and its role in neutrophil metabolism has not been fully understood yet, especially the importance of mTOR complex 2 (mTORC2) in the neutrophil effector functions. In this study, we observed that the loss of Rictor (mTORC2 scaffold protein) in primary mouse-derived neutrophils affects their chemotaxis by fMLF and their microbial killing capacity, but not the phagocytic capacity. We found that the microbicidal capacity was impaired in Rictor-deleted neutrophils because of an improper fusion of granules, reducing the hypochlorous acid production. The loss of Rictor also led to metabolic alterations in isolated neutrophils, increasing aerobic glycolysis. Finally, myeloid-Rictor-deleted mice (LysMRic Δ/Δ) also showed an impairment of the microbicidal capacity, increasing the bacterial burden in the Escherichia coli sepsis model. Overall, our results highlight the importance of proper mTORC2 activation for neutrophil effector functions and metabolism during sepsis.


Subject(s)
Mechanistic Target of Rapamycin Complex 2/metabolism , Neutrophils/metabolism , Sepsis/metabolism , Sepsis/microbiology , Animals , Chemotaxis/physiology , Escherichia coli/metabolism , Female , Glycolysis/physiology , Humans , Hypochlorous Acid/metabolism , Mice , Mice, Inbred C57BL , Phagocytosis/physiology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...